

HVA

16 september 2017

 Sjors Gielen (500765899) & Marc Griepspoor (500710937)

Datastructures and Algorithms GD

Big-O-Highscores

 1

D
a

ta
s
tr

u
c
tu

re
s

a

n
d

 A
lg

o
ri

th
m

s
 G

D
 |

 1
6

-9
-2

0
1

7

Datastructures and Algorithms GD

Big-O-Highscores
Before any assignment was started Sjors made a simple test runner to keep track of tests in

a consistent manner. The test runner looks like this:

The test runner uses a dictionary to easily add in the excerisze classes along with an integer

of how many times the test suite is meant to run the code.

An example of the test suite running Excersize_1 5000 times 3 times would look like this in

the console:

Question 1:

Write a program that generates an array with 100 random numbers (high scores
between 0 and 10000) and then checks if the numbers are unique - output is yes or no:

For question one we simply made an array of size 100 and used a for loop to iterate through

each.

With the data setup we made a number of methods. First we did the straight forward solution

of having a double for loop run through it. But we ended up creating a hashmap buffer to

 2

D
a

ta
s
tr

u
c
tu

re
s

a

n
d

 A
lg

o
ri

th
m

s
 G

D
 |

 1
6

-9
-2

0
1

7

which we would attempt to add new indexes. Once an index was impossible to be added we

would have our result. This way the algorithm is O(f(n)), Ω(f(1)).

Question 2:

Execute the program above 5000 times, and report how many times the array contains
at least one duplicate. What is the probability that a high score list contains at least

one duplicate value?

Mathematically we can define the odds of a number existing twice in the array by doing the

following math:

𝑐ℎ𝑎𝑛𝑐𝑒 = 1 −
𝑃𝑜𝑠𝑠𝑏𝑖𝑙𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑠!

(𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑠)𝑖𝑛𝑑𝑒𝑥𝑒𝑠 ∗ (𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑠 − 𝑖𝑛𝑑𝑒𝑥𝑒𝑠)!

Where ! is the factorial operation.

Which in this case would be

𝑥 = 1 −
10000!

(10000)100 ∗ (10000 − 100)!

Resulting in x to approximately be equal to 0.3914.

 3

D
a

ta
s
tr

u
c
tu

re
s

a

n
d

 A
lg

o
ri

th
m

s
 G

D
 |

 1
6

-9
-2

0
1

7

This value is accurately represented within our test suite. we even decided to run it for 5

million times to get more significance.

Question 3

Write a program that initializes an array of length 10000 with all values at 0. Then, add
+1 to a random element, and repeat 100 times. Now check if the array contains a value

greater than 1 (output is a boolean).

For this we created a new file that we would run through our test suite. The new file is as

follows:

 4

D
a

ta
s
tr

u
c
tu

re
s

a

n
d

 A
lg

o
ri

th
m

s
 G

D
 |

 1
6

-9
-2

0
1

7

As the orderby from LINQ uses stable quicksort the big-O we are dealing with here is O(f(n

log(n))).

Question 4

Execute the program above 5000 times, and report how often at least one duplicate
value is found. Again, what is the probability that a high score list contains at least

one duplicate value?

The probabilities are found on the average result section of the reports.

Question 5

Are the probabilities found under 2) and 4) equal? Explain why (not).

In our testing suite we do find the same probability, or at least a close enough estimate over

5 tests.

 5

D
a

ta
s
tr

u
c
tu

re
s

a

n
d

 A
lg

o
ri

th
m

s
 G

D
 |

 1
6

-9
-2

0
1

7

Another interesting note is the huge speed difference here. The original formula is about 100

times faster. This may be related to how the data is setup. Perhaps the test suite should

have data be defined outside of the scope of the stopwatch?

More likely thought is our difference in big o notation. The sorting process simply takes up

too much time currently.

Question 6 & 7

Consider the program you created to answer question 1 and 3. What is the time
complexity (in terms of Big-O) of this program? Motivate your answer.

Time complexities were already handled on questions 1 and 3. For summary they were.

For the first solution O(f(n)).

This is the result of simply adding items directly to a hasmap which will be impossible if the

hasmap already contains the value, via this we detect a duplicate value. This wat we would

only have to iterate once through the entire dataset.

For the second solution O(f(n log(n))).

Due to the sorting process we require the slower O(f(n log(n))). Quicksort may be fast but it

doesn’t shine when it only gets a small amount of indexes. It reverts back to Selection sort

far too fast(instead of binary sort). Keep in mind that n is assumed to be the arraysize here

and not the playercount. Increasing the playercount should have no effect on the speed on

this algorithm

Question 8 & 9

Taking n as the number of players, fill in the following table for your solution of 1 & 3.
Make sure you take the average time over at least 1000 execution runs. Do these

results confirm your analysis reported in question 6)?

To make testing this faster and more flexible we modified the scripts to make the variables in

question be present in the constructors of the class. This would let us test several

configurations in a swift manner. The testing suite received some small modifications to

support this as well.

 6

D
a

ta
s
tr

u
c
tu

re
s

a

n
d

 A
lg

o
ri

th
m

s
 G

D
 |

 1
6

-9
-2

0
1

7

As expected the Q3 solution does not change in terms of time as the respective n value for it

was not altered. More players just means that the chance it returns true increases.

For the Q1 solution though we can see that the time slowly increases. Again this is along

with what we would expect. A larger list means the chance the first duplicate is found

increases slower.

Amendment

After writing the main points through this document we realized that it would currently be far

more efficient to remove the sorting from the Q3 solution. In doing so we reduce the big O

down to n! – (n-size)! instead of nlog(n). As the probability to find a 2 on the first index goes

up with more players.

This means the code has moved to this:

And the eight piece test now looks like:

Also please note that on some of the earlier tests we had the wrong random seed setting in

that random parameter of Q3. This results in Q3 having too high probabilities sometimes as

the seeds isn’t properly being modulated.

This is achieved by doing: Random random = new Random(Guid.NewGuid().GetHashCode());

instead of Random random = new Random();

 7

D
a

ta
s
tr

u
c
tu

re
s

a

n
d

 A
lg

o
ri

th
m

s
 G

D
 |

 1
6

-9
-2

0
1

7

The differences in time is now more in-line with what we expect from our big O notation. The

main reason we see Q3 400 be faster than Q3 800 is that the data-setup takes much longer

compared on Q3 compared to Q4. A thought is to make the dataset production be handled

outside of the stopwatch timers to remove this part of the process from being timed.

Keep in mind that the data creation on both ends is big O = n, therefor we did not take them

into account when comparing the actually methods which execute the mutation on the

dataset.

