

HVA

7 oktober 2017

 Sjors Gielen (500765899)

Datastructures and Algorithms GD

Invertorio

 1

D
a

ta
s
tr

u
c
tu

re
s

a

n
d

 A
lg

o
ri

th
m

s
 G

D
 |

 7
-1

0
-2

0
1

7

Datastructures and Algorithms GD

Invertorio
The test suite from last exercise was expanded in this exercise to support param args. Any

param args with an equals in it is used to set a property on the exercise class underneath.

Other param args are to be handled within the construct data method. This was mostly done

to ensure that it’s easy to read in the console what the current test running is. For complete

context this is the test suite’s current code:

And the exercise base-class now looks like this:

 2

D
a

ta
s
tr

u
c
tu

re
s

a

n
d

 A
lg

o
ri

th
m

s
 G

D
 |

 7
-1

0
-2

0
1

7

By using some simple reflection I find the property if it exists and assign it the value.

Currently it only supports int32’s but can be built out to include more types

Question 1:

Write a program that reads Strings as user input from Console and stores them in a
Stack. When the user enters an empty line and presses enter, your program prints the

inventory items in reverse order:

If the param generated is not being used the construct data method will roll into the while

input loop. Otherwise it will use the generateRadonmString method to make words amount of

words.

After the data is generated we run a simple recursive method to build the string. In the

snippet I have commented out the WriteLine to prevent the output buffer from intervening

with the time-tracking.

 3

D
a

ta
s
tr

u
c
tu

re
s

a

n
d

 A
lg

o
ri

th
m

s
 G

D
 |

 7
-1

0
-2

0
1

7

Question 2:

Change your program such that it uses a Queue to store the inventory items.

The assignemtn remains mostly the same. Just need to keep track of the stackframe’s data

as it isn’t held neatly by the order of how the line must be written.

Question 3

Which of these two datastructures leads to the most time efficient code? Base your
argument on how stacks and queues work. Can we predict the Big-O for each

method?

 4

D
a

ta
s
tr

u
c
tu

re
s

a

n
d

 A
lg

o
ri

th
m

s
 G

D
 |

 7
-1

0
-2

0
1

7

They are actually the same. The built in stack and queue are both written to do their pop and

dequeue methods both operate under O(1). This means that both GenerateContentsString

methods operate on O(n). However string concatenation takes O(n). Seeing as the amount

of words constantly increases by a the words already in the buffer + the new word. This

results in the methods going to O(!). This could have been improved allot by having the

content be throw out into a List<T> first and returning the inverted structure. Then foreaching

over that to print all the data would ultimately achieve the same effect.

Question 4

Run an experiment where you estimate the Big-O of each method (Q1 and Q2)

A quick run of the test suite shows the O(!) behaviour perfectly. The words constantly double

but the time rises much faster than O(n2) would. Not included in the screenshot but a

version with 1600 words would jump up to 5 milliseconds per test.

Question 5

Does your program use dynamic programming (recursion)? If yes, show the relevant
code snippets. If no, change part of your program so that works recursively.

Yes. Screenshots were already provided earlier in this report.

Question 6

What is the stopping criterion of your recursive function(s)?

For both methods the stopping criterion is countable<T>.count() == 0 or

countable<T>.count() == 1. In the case an empty stack or queue is supplied we can return an

empty string. Otherwise we keep popping/dequeuing until there is only one entity left, then

we simply pop/dequeue that last entity and we can stop.

Bonus

Show how to implement a Queue using two Stacks.

 5

D
a

ta
s
tr

u
c
tu

re
s

a

n
d

 A
lg

o
ri

th
m

s
 G

D
 |

 7
-1

0
-2

0
1

7

Like so.

